1,603 research outputs found

    POLAR: Instrument and Results

    Get PDF
    We describe the design, performance, and results of a polarimeter used to make precision measurements of the 2.7 K cosmic microwave background. In the Spring of 2000 the instrument searched for polarized emission in three microwave frequency bands spanning 26–36 GHz. The instrument achieved high sensitivity and long-term stability, and has produced the most stringent limits to date on the amplitude of the large angular scale polarization of the cosmic microwave background radiation

    High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Get PDF
    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products

    How bias correction goes wrong: measurement of X_(CO_2) affected by erroneous surface pressure estimates

    Get PDF
    All measurements of X_(CO_2) from space have systematic errors. To reduce a large fraction of these errors, a bias correction is applied to X_(CO_2) retrieved from GOSAT and OCO-2 spectra using the ACOS retrieval algorithm. The bias correction uses, among other parameters, the surface pressure difference between the retrieval and the meteorological reanalysis. Relative errors in the surface pressure estimates, however, propagate nearly 1:1 into relative errors in bias-corrected X_(CO_2). For OCO-2, small errors in the knowledge of the pointing of the observatory (up to ∼130 arcsec) introduce a bias in X_(CO_2) in regions with rough topography. Erroneous surface pressure estimates are also caused by a coding error in ACOS version 8, sampling meteorological analyses at wrong times (up to 3 h after the overpass time). Here, we derive new geolocations for OCO-2's eight footprints and show how using improved knowledge of surface pressure estimates in the bias correction reduces errors in OCO-2's v9 X_(CO_2) data

    Large Chinese land carbon sink estimated from atmospheric carbon dioxide data

    Get PDF
    Limiting the rise in global mean temperatures relies on reducing carbon dioxide (CO2) emissions and on the removal of CO2 by land carbon sinks. China is currently the single largest emitter of CO2, responsible for approximately 27 per cent (2.67 petagrams of carbon per year) of global fossil fuel emissions in 20171. Understanding of Chinese land biosphere fluxes has been hampered by sparse data coverage2–4, which has resulted in a wide range of a posteriori estimates of flux. Here we present recently available data on the atmospheric mole fraction of CO2, measured from six sites across China during 2009 to 2016. Using these data, we estimate a mean Chinese land biosphere sink of −1.11 ± 0.38 petagrams of carbon per year during 2010 to 2016, equivalent to about 45 per cent of our estimate of annual Chinese anthropogenic emissions over that period. Our estimate reflects a previously underestimated land carbon sink over southwest China (Yunnan, Guizhou and Guangxi provinces) throughout the year, and over northeast China (especially Heilongjiang and Jilin provinces) during summer months. These provinces have established a pattern of rapid afforestation of progressively larger regions5,6, with provincial forest areas increasing by between 0.04 million and 0.44 million hectares per year over the past 10 to 15 years. These large-scale changes reflect the expansion of fast-growing plantation forests that contribute to timber exports and the domestic production of paper7. Space-borne observations of vegetation greenness show a large increase with time over this study period, supporting the timing and increase in the land carbon sink over these afforestation regions

    How bias correction goes wrong: measurement of X_(CO_2) affected by erroneous surface pressure estimates

    Get PDF
    All measurements of X_(CO_2) from space have systematic errors. To reduce a large fraction of these errors, a bias correction is applied to X_(CO_2) retrieved from GOSAT and OCO-2 spectra using the ACOS retrieval algorithm. The bias correction uses, among other parameters, the surface pressure difference between the retrieval and the meteorological reanalysis. Relative errors in the surface pressure estimates, however, propagate nearly 1:1 into relative errors in bias-corrected X_(CO_2). For OCO-2, small errors in the knowledge of the pointing of the observatory (up to ∼130 arcsec) introduce a bias in X_(CO_2) in regions with rough topography. Erroneous surface pressure estimates are also caused by a coding error in ACOS version 8, sampling meteorological analyses at wrong times (up to 3 h after the overpass time). Here, we derive new geolocations for OCO-2's eight footprints and show how using improved knowledge of surface pressure estimates in the bias correction reduces errors in OCO-2's v9 X_(CO_2) data

    Regional Impacts of COVID-19 on Carbon Dioxide Detected Worldwide from Space

    Full text link
    Activity reductions in early 2020 due to the Coronavirus Disease 2019 pandemic led to unprecedented decreases in carbon dioxide (CO2) emissions. Despite their record size, the resulting atmospheric signals are smaller than and obscured by climate variability in atmospheric transport and biospheric fluxes, notably that related to the 2019-2020 Indian Ocean Dipole. Monitoring CO2 anomalies and distinguishing human and climatic causes thus remains a new frontier in Earth system science. We show, for the first time, that the impact of short-term, regional changes in fossil fuel emissions on CO2 concentrations was observable from space. Starting in February and continuing through May, column CO2 over many of the World's largest emitting regions was 0.14 to 0.62 parts per million less than expected in a pandemic-free scenario, consistent with reductions of 3 to 13 percent in annual, global emissions. Current spaceborne technologies are therefore approaching levels of accuracy and precision needed to support climate mitigation strategies with future missions expected to meet those needs

    Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data

    Get PDF
    The objective of the National Aeronautics and Space Administration's (NASA) Orbiting Carbon Observatory-2 (OCO-2) mission is to retrieve the column-averaged carbon dioxide (CO₂) dry air mole fraction (XCO2) from satellite measurements of reflected sunlight in the near-infrared. These estimates can be biased by clouds and aerosols, i.e., contamination, within the instrument's field of view. Screening of the most contaminated soundings minimizes unnecessary calls to the computationally expensive Level 2 (L2) X_(CO₂) retrieval algorithm. Hence, robust cloud screening methods have been an important focus of the OCO-2 algorithm development team. Two distinct, computationally inexpensive cloud screening algorithms have been developed for this application. The A-Band Preprocessor (ABP) retrieves the surface pressure using measurements in the 0.76 µm O₂ A band, neglecting scattering by clouds and aerosols, which introduce photon path-length differences that can cause large deviations between the expected and retrieved surface pressure. The Iterative Maximum A Posteriori (IMAP) Differential Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) retrieves independent estimates of the CO₂ and H₂O column abundances using observations taken at 1.61 µm (weak CO₂ band) and 2.06 µm (strong CO₂ band), while neglecting atmospheric scattering. The CO₂ and H₂O column abundances retrieved in these two spectral regions differ significantly in the presence of cloud and scattering aerosols. The combination of these two algorithms, which are sensitive to different features in the spectra, provides the basis for cloud screening of the OCO-2 data set. To validate the OCO-2 cloud screening approach, collocated measurements from NASA's Moderate Resolution Imaging Spectrometer (MODIS), aboard the Aqua platform, were compared to results from the two OCO-2 cloud screening algorithms. With tuning of algorithmic threshold parameters that allows for processing of  ≃ 20–25 % of all OCO-2 soundings, agreement between the OCO-2 and MODIS cloud screening methods is found to be  ≃ 85 % over four 16-day orbit repeat cycles in both the winter (December) and spring (April–May) for OCO-2 nadir-land, glint-land and glint-water observations. No major, systematic, spatial or temporal dependencies were found, although slight differences in the seasonal data sets do exist and validation is more problematic with increasing solar zenith angle and when surfaces are covered in snow and ice and have complex topography. To further analyze the performance of the cloud screening algorithms, an initial comparison of OCO-2 observations was made to collocated measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). These comparisons highlight the strength of the OCO-2 cloud screening algorithms in identifying high, thin clouds but suggest some difficulty in identifying some clouds near the surface, even when the optical thicknesses are greater than 1
    • …
    corecore